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Abstract 

We propose an empirical equation to simulate the potential-current 
and power-current curves for a polymer electrolyte membrane fuel 
cell (PEMFC) stack. The equation has been demonstrated to fit 
experimental curves excellently for the entire reaction process, 
including activation, ohmic, and mass-transfer controls. Using this 
equation to simulate the mass-transfer process will not cause 
different results for the E0, b, and R values than using the analytical 
equation (E, = E0-b log i-Ri). The effect of each mass-transfer 
parameter on the shape of the potential-current and power-current 
curves are compared, and overall they show a regular variation. We 
also analyzed the effect of relative humidity on the performance of a 
strip design PEMFC stack. 
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1. Introduction 
A polymer electrolyte membrane fuel cell (PEMFC) is one of the best 
candidates for a portable power supply device for commercial applica- 
tions, primarily because it is lightweight and has a high power density. 
Much attention has been given to PEMFC research and development 
during the last 10 years [1-10]. Most research has concentrated on single 
PEMFCs. However, PEMFC stacks have recently been developed with a 
variety of designs and different applications [11-14]. The performance of 
a PEMFC stack is different from that of a single PEMFC. In our investiga- 
tion of the PEMFC stack, we observed mass-transfer phenomena when 
the stack was operating at high current density. This is probably because 
of low oxygen concentration, slow heat dispersion, and improper water 
management, especially for an air-breathing PEMFC stack. To reach a 
high power density, the PEMFC stack must operate under conditions that 
require a high current density, such as being a power source in an electric 
vehicle. 

An understanding of the electrode processes of mass transfer is important 
in designing and constructing a PEMFC stack. Since the early 1960s, 
several modeling studies have been conducted to explain single-cell 
potential versus current density behavior [5 and references therein]. 
However, analytic expressions for the potential-current behavior have 
been developed only in special cases, such as when electrode reactions are 
either activation and ohmic or activation and mass-transfer controlled. 
When all forms of overpotentials (activation, ohmic, and mass transfer) 
are present, as at high current density, there are no analytical solutions for 
the second-order differential equations. Kim et al [5] have reported mass- 
transfer phenomena in single-cell PEMFC and modeled the potential- 
current behaviors with an empirical equation, which shows excellent fit 
with the experimental potential-current curves. However, their equation 
gives different values of kinetic parameters (E0, b, and R) when a conve- 
nient analytical equation is used alone (for activation and ohmic control). 
In this report, we simulate the mass-transfer behavior for a PEMFC stack 
with a modified empirical equation to obtain the same kinetic values as 
when using a convenient analytical equation. 

2. Development of the Model 
Figure 1 shows a typical potential-current curve of a 10-cell strip air- 
breathing PEMFC stack. We obtained the points in the figure from experi- 
mental data. When the current is high enough, the experimental points 
drop quickly to a zero-voltage value. As is well known, electrode proc- 
esses can be attributed to activation, ohmic, and mass-transfer controls. 
Activation occurs mainly at the beginning of the potential-current curve, 
ohmic control at the middle, and mass transfer at the high current density 



Figure 1. Typical 
potential-current 
behavior of 10-cell 
PEMFC stack with 
mass-transfer 
limitation. Points 
were obtained from 
experiment. Lines 
are calculated curves 
with equations (1) 
and (6), respectively. 
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ranges. The potential-current behavior at the low and middle current 
ranges can be described as [5,6] 

where 

Ei = E0-b log i - Ri , 

E0 = Er + b log i0 

(1) 

(2) 

In these equations, E, (V) and i (A) are the experimentally measured 
potential and current, Er (V) is the reversible potential for the stack, and i0 

(A) and b (mV/dec) are the exchange current and the Tafel slope for the 
oxygen reduction, respectively. R (Q) represents the direct current resis- 
tance, such as the resistance in the polymer membrane and other stack 
components, that causes a linear variation of potential with the current. 
The top curve (dashed line) in figure 1 is calculated with equation (1), 
which deviates from the experimental points at higher current density 
ranges. However, the curve calculated with equation (1) gives a good fit 
with the experimental data only at the low and middle current density 
ranges. 

The entire current range of the potential-current curve can be described as 

Ej=E0-blogi-Ri-AE , 

where AE (V) is the overpotential caused by mass transfer. 

An expression has been developed for AE by Rho et al [6]: 

AE -m exp(m) . 

Combining equations (1) and (4) gives 

E{ = E0-b log i -Ri-m exp(nf) . 

(3) 

(4) 

(5) 



The m and n in equations (4) and (5) are mass-transfer parameters [5]. 
With equation (5), we have demonstrated an excellent fit with the experi- 
mental data in the presence of mass transfer. However, using equation (5) 
gives different values of E0, b, and R than does using equation (1). We 
developed an equation that can give the same values of E0, b, and R with 
equation (1) in the entire current range. We did this by modifying 
equation (5): 

E,: = E0 - b log i - Ri - imm exp(ram) , (6) 

hi = i ~ U (when i > id), and (7) 

im = 0 (when i<id) . (8) 

In equations (7) and (8), id (A) is the minimum value of current that causes 
the voltage deviation from the linearity in figure 1. The id value can be 
obtained from the experimental curve and from the calculated curve with 
equation (1). The m (Q) and n (A"1) are the mass-transfer parameters (their 
definitions are somewhat different from ref. 5), which describe the second 
slope of potential decrease with current and the degree of curvature at the 
stack's polarization curve in the high current density range, respectively. 
The im (A) is mass transfer current; its meaning is defined by equation (7). 

Equation (6) gives an excellent fit with the potential-current curves in the 
entire range of current. For instance, the bottom curve (solid line) shown 
in figure 1 was calculated with equation (6), which agrees with the experi- 
mental points. The two lines in figure 1 were both calculated with equa- 
tions (1) and (6) and give the same values of E0, b, and R. 

3. Simulation by Varying Mass-Transfer Parameters 
To better understand equation (6), we investigated the three parameters 
id, m, and n. We kept the E0, b, and R values constant and varied the id, m, 
or n values one by one. Figure 2 shows the effect of the n parameter on 
the potential-current and power-current curves. When the n value de- 
creases, the potential-current curve becomes less curved, and gradually 
becomes a straight line when the n value is close to zero; also the power- 
current curve becomes a large arch, and the peak power at n = 0.2 A-1 

almost doubles that at n = 3.0 A"1. Figure 3 shows the effect of the iA 

parameter on the potential-current and power-current curves. The curva- 
ture of the potential-current curve has no significant change with the 
increase of id. However, the start point, where deviation from equation (1) 
occurs, is moving to a higher current value. The power-current curve 
exhibits an asymmetrical arch, and its peak power increases with the 
addition of the id value. Figure 4 shows the effect of the m parameter on 
the potential-current and power-current curves. The m parameter does 
not affect the curvature of the potential-current curve, but it increases the 
slope with an increase of the m number. The power-current curve is also 
shown as an arch, and the peak power increases with a decrease of the m 
number. 



Figure 2. Effect of n 
value on model of 10- 
cell PEMFC stack's 
potential- and power- 
current curves (EQ 

= 10 V, b = 600 mV/ 
dec, R = 0.5 Q, id 

= 1.44 A, and m = 
0.1 Q); n values vary 
from bottom to top 
curves as 3.0,1.5,0.5, 
and 0.2 A-1, 
respectively. 
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Figure 3. Effect of id 

value on model of 
10-cell PEMFC 
stack's potential- and 
power-current curves 
(E0 = 10 V, b = 600 mV, 
R = 0.5Qm = 0.lU 
and M = 1.5 A-*); i^ 
values vary from 
bottom to top curves 
as 0.83,1.44, 2.2, and 
3.0, respectively. 
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Figure 4. Effect of m 
value on model of 10- 
cell PEMFC stack's 
potential- and power- 
current curves (E0 

= 10 V, b = 600 mV/dec, 
R = 0.5 Q, id = 1.44 A,     o 
and n = 1.5 A-*); m 
values vary from 
bottom to top curves 
as 1.0, 0.5, 0.1, and 
0.01 Q, respectively. 
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4. Simulation of Experimental Curves 
Figure 5 shows the potential-current and power-current curves for a strip 
PEMFC stack operating at different humidity levels. The points on the 
curves were obtained from experimental data, and the lines were calcu- 
lated with equation (6). When the humidity decreases, the curves appar- 
ently bend down, which implies that the mass-transfer controlled process 
becomes more serious at a low humidity. The power-current curve first 
increases and then decreases with current. Therefore, peak power values 
are formed. For conditions with 90 and 70 percent relative humidity, the 
maximum powers are 8.3 and 6.5 W, respectively. The kinetic parameters 
are obtained from the computer fitting and are listed in table 1. When the 
humidity increases, the b and R values both decrease, but the ij value 
increases. The n value is kept constant during each calculation. The m and 
n parameters seem difficult to compare when they have different id 

values. However, we can solve this problem by comparing another kinetic 
parameter, mass-transfer impedance (Rm (Q)), which is defined as 

Rm = AE/i ■■ (imm exp(nim))/f (9) 

In our study, we only used the m and n parameters to obtain the optimum 
fit with the experimental points and used equation (9) to calculate the 
mass-transfer impedance beyond the range of experimental data. Figure 6 

Figure 5. 
Experimental curve 
simulation for strip 
design 10-cell 
PEMFC stack at 
different humidities. 
Temperature 
constant at 30 °C. 
Points and lines are 
experimental data 
and computer- 
calculated curves, 
respectively. 
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Table 1. Electrode- 
kinetic and mass- 
transfer parameters 
for strip PEMFC stack 
at different humidity 
levels. Temperature is 
constant at 30 °C. 

%RH E0(V) b (mV/dec) R(Q) m(Q) n (A'1) id (A) 
70 
90 

9.2 
9.2 

680 
600 

1.1 
1.08 

0.36 
1.0 

1.5 
1.5 

0.65 
1.34 



Figure 6. Plot of mass- 
transfer impedance 
versus stack current 
at different humidity 
levels. Temperature 
constant at 30 °C. 

5. Summary 

1.0 1.5 
Stack current (A) 

shows the calculated mass-transfer impedance for conditions with 70 and 
90 percent relative humidity. The lower humidity has a much larger mass- 
transfer impedance. The mass-transfer impedance starts at zero and 
increases quite quickly with current for both humidity levels. 

We proposed an empirical equation (eq (6)) to describe the entire reaction 
process of a PEMFC stack, including activation, ohmic, and mass-transfer 
controls. This equation demonstrated an accurate fit with experimental 
potential-current curves without causing different kinetic values of E0, b, 
and R with that of using the analytical equation (eq (1)). The effect of each 
mass-transfer parameter (m, n, and id) on the change of the shape of the 
potential-current and power-current curves was compared, and overall 
they showed a regular variation. The experimental potential-current and 
power-current curves at different humidity levels were simulated, and a 
series of kinetic and mass-transfer parameters were obtained by the 
simulation. We defined a concept of mass-transfer resistance (Rm), and 
analyzed the variation of mass-transfer resistance with current at different 
humidity levels. 
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